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ABSORBING BOUNDARY CONDITIONS 
FOR ELECTROMAGNETIC WAVE PROPAGATION 

XIAOBING FENG 

ABSTRACT. In this paper, the theoretical perfectly absorbing boundary con- 
dition on the boundary of a half-space domain is developed for the Maxwell 
system by considering the system as a whole instead of considering each com- 
ponent of the electromagnetic fields individually. This boundary condition 
allows any wave motion generated within the domain to pass through the 
boundary of the domain without generating any reflections back into the in- 
terior. By approximating this theoretical boundary condition a class of local 
absorbing boundary conditions for the Maxwell system can be constructed. 
Well-posedness in the sense of Kreiss of the Maxwell system with each of 
these local absorbing boundary conditions is established, and the reflection 
coefficients are computed as a plane wave strikes the artificial boundary. Nu- 
merical experiments are also provided to show the performance of these local 
absorbing boundary conditions 

?1. INTRODUCTION 

Electromagnetic phenomena in a perfect medium [3] are described with the help 
of two vector fields E and H, the electric field and the magnetic field. The properties 
of the medium in which the waves propagate are characterized by the two material 
constants E and ,u, the permittivity and the permeability of the medium. The forces 
which generate the waves are described as charge density and current density, which 
we denote by p and J. 

The relations between vector fields E, H and the material constants e, ,u are 
formulated by the following Maxwell system: 

(l.l.i) ~~~divE= - 

(lii) divH=O, 
__E 1 

(1.l.iii) OF -(curlH -J)- a9t 

(1.1.iv) OH - curl E. 
At A 

To make this Maxwell system solvable, we have to prescribe the initial condition 
and the boundary condition if the system is not considered in the entire space R3. 
In this paper we will consider it in a half-space domain. 
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There are many important problems of numerical simulation of waves whose 
significant components propagate through an infinite domain. Typical examples are 
found in underwater acoustics, seismic wave propagations, and the electromagnetic 
wave scattering related to antennas. Because of the limitations of both speed and 
memory of present day computers, one must solve these problems in a finite domain. 
A natural way to do so is to introduce artificial computational boundaries without 
changing the governing differential equations. On these artificial boundaries one 
need to impose some boundary conditions so that waves can be transmitted through 
these boundaries. 

Theoretically, pseudo-differential operators can be constructed on the artificial 
boundaries for perfect transmission of outgoing waves. Unfortunately, except in the 
most trivial one-dimensional cases, these boundary conditions are non-local both in 
space and time and are not practical for numerical approximations. Therefore, one 
must essentially approximate in a judicious fashion the perfect absorbing boundary 
pseudo-differential operators and get a class of computationally rigorous boundary 
conditions of differential operators of order N, which are called "Nth order absorb- 
ing boundary conditions". With these absorbing boundary conditions, which are 
local in space and time, there arise two problems to be studied: the well-posedness 
of the original problems in an artificial domain and reflection of waves at artificial 
boundaries. Once these two problem are solved, the continuous absorbing bound- 
ary conditions are approximated by discrete absorbing boundary conditions which 
are then coupled to a standard interior discretization of the differential equations. 

Absorbing boundary conditions of such kind have been constructed and analyzed 
for acoustic and elastic wave propagations by many authors; for detailed exposi- 
tions, we refer to [5], [6], [8], [9], [11], [20], [21] and the references therein. 

The objective of this paper is to develop and analyze both the theoretical per- 
fectly absorbing boundary condition and its local approximations for three-dimen- 
sional electromagnetic wave propagation on the boundary of a half-space domain. 
There are two difficulties in constructing absorbing boundary conditions for the 
Maxwell system on the boundary of a half-space domain: first, the system is hy- 
perbolic but not strictly hyperbolic; and second, the flat artificial boundary is a 
uniform characteristic of the system in the sense of [15]. 

Almost all of the results in this direction that are known to the author were 
obtained under the assumption that the fields are divergence-free. Under this 
assumption it is easy to check that each component of both the electric field E and 
the magnetic field H satisfies the scalar acoustic wave equation (cf. [3]), for which 
the absorbing boundary condition theory in the half-space case was already well 
established by Engquist and Majda [5], [6], Higdon [9], Trefethen and Halpern [21], 
and others, but it was pointed out by Joly and Mercier [12] that the natural but 
naive application of this theory to each component of the fields leads to an unstable 
problem. On the other hand, Duceau and Mercier [4] showed that if one applies 
the acoustic absorbing boundary conditions only to the tangential components of 
the electric field, then the resulting problem is stable. Under the same assumption, 
Joly and Mercier [12] found and analyzed a very interesting and simple second order 
absorbing boundary condition which only involves first order differential operators 
and hence can be used easily for the treatment of the edges and corners. When 
the assumption that the fields are divergence-free is dropped, it seems that the 
only published result is the one given by Bendali and Halpern [1] in which zero and 
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second order absorbing boundary conditions were proposed for the Maxwell system, 
but it was reported in [17] that their second order absorbing boundary condition 
leads to an ill-posed problem. 

The layout of this paper is as follows. In Section 2, the theoretical perfectly 
absorbing boundary condition is obtained by considering the Maxwell system as 
a whole, instead of considering each component of the electromagnetic fields indi- 
vidually. The main idea is to use the Laplace-Fourier transform and construct a 
special "symmetrizer" or change of dependent variables to derive an implicit for- 
mula for the solutions of the Maxwell system. As in the scalar acoustic wave case 
(cf. [5], [6]), a class of local absorbing boundary conditions could be constructed 
by using the Pade approximations for the function 1 , but in this paper we 
are only interested in its first two approximations. In Sections 3 and 4 reflection 
and stability properties for the first two local absorbing boundary conditions are 
analyzed. Finally, the results of some numerical tests are presented in Section 5 to 
show the performance of these two absorbing boundary conditions. 

?2. DERIVATION OF BOUNDARY CONDITIONS 

In this section we first derive the theoretical perfectly absorbing boundary con- 
dition in a half-space domain for the Maxwell system. The boundary condition 
is described by a pseudo-differential equation on the boundary. We then obtain 
several local and practical absorbing boundary conditions by approximating the 
pseudo-differential equation near normal incidence. 

2.1. Theoretical perfectly absorbing boundary condition. It is well-known 
that the Maxwell system (1.1) can be simplified by deleting the first two equations 
if at some time to (lii) and (l.1.ii) hold simultaneously at each point in space 
(cf. Dautray and Lions [3] for a proof). Under this condition, the Maxwell system 
reduces to the following form: 

(2.1) A (i) (--1 cur l curl) (E) + (F) 
If the spatial variables are denoted by x = (x1, x2, x3), then the curl operator in 
(2.1) has the representation 

(2.2) ( n 1 + ) ( ? + )1 Q ?1 

It follows that (2.1) is symmetrically hyperbolic if E = , = 1. If E $& 1 or ,u $ 1, 
the exact same symmetric form can be obtained by the following changes of both 
dependent and independent variables: 

(2.3) x = (EA)- 2 
y, E = (6p)- D, H = AB. 

Hence, in the rest of this paper, unless otherwise stated, we shall always assume 
that E 1. We also assume that to = 0 for convenience, and let 

(2.4) E(x,0) = Eo(x), H(x,0) = Ho(x), 

where Eo and Ho are two given vectors which satisfy (lii) and (l.1.ii). 
By introducing the six-dimensional vector 

r 
_(l*(X, t) = (Ul U2,_ U3 U4 i 

n_ 
iA U6 21 E3 i II TX TX T HAt 
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the Maxwell system (2.1) with (2.4) can be rewritten in the following matrix form: 

(2.5.i) -t = Aj 
u 

+ f, 

(2.5.ii) u(x, 0) =uo(x), 
where 

(Eo (x) \ 0 C\ 
7O (x) ? )) and Aj KC o) j 1,2,3; 

0 O0 0 0 1' (0 -1 0 
Cl = { 0 0 -1 , C2 = { 0 0 01, C3= 1i 0 0 

0 1 0 -1 0 O I O 0 

In the definition of Aj and later in this paper we abuse the notation by using 0 
also to denote the 3 x 3 zero matrix. We assume that no confusion will be caused 
by this. 

In this section we consider the Maxwell system (2.5) in the half-space do- 
main R3 - {x = (XI,X2,X3);Xi > O} with the artificial boundary F = {x 
(x1, x2, x3); x = 0}. It is well-known that we need to impose two boundary con- 
ditions on F in order to uniquely determine E and H, and since F is an artificial 
boundary, the imposed boundary conditions should not produce too much reflec- 
tion, and the less reflection the boundary conditions produce, the better boundary 
conditions they are. The objective of this section is to construct both the theoretical 
perfectly absorbing boundary condition and its local approximations. 

Recall that the Fourier transform of u7(x, t) with respect to t is defined by 

(2.6) ,F'd(x, u (x,t)e-i tdt, 
-00 

and the inverse Fourier transform is given by 

1 r?? 
(2.7) u7(x, t) =- J FTu'(x, ()ei*tck. 

The Laplace transform of ui(x, t) with respect to t is defined by 

(2.8) Lu'(x,s)- e-stU(x,t)dt =.FU(x,t), s = iq (r1 > 0), 

where 

-'It'(X, t), > 0, 
vi(x, t) ={e u(x,(t) t <0. 

Applying the Fourier transform with respect to both tangential variables x2 and 
X3, with dual variables iW2 and iW3, and the Laplace transform in t, with dual 
variable s =r + if (r7 > 0) to system (2.5), the system then becomes 

su = A1 i + iW2A2L + Wi3A3' + f(xl, w, s) + o(xi, ), 
" oxo 

where the "hat" denotes the Fourier-Laplace transform and w =(W2, W3). 
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The above equation can also be rewritten as 

(2.9) iA1 =Mui-ig, OxA 

where f f + iuo and M is a 6 x 6 matrix which has the following form if we let I 
denote the 3 x 3 identity matrix: 

(2.10) M( (W)-M isI) 
Ml 

W3 0 0) 

Next, we want to decouple the ordinary differential system (2.9) and solve it. To 
this end we introduce the following change of dependent variable or "symmetrizer" 
for (2.9), which is a generalization of the one in [15] for the curl operator. In the 
following we will give a detailed derivation for the case $wl 0 ? and a remark for 
the case -wl = 0 at the end of the derivation. 

Let w' w/ wI, W1a2 W=2 + W2. Define the linear operator Q by 

el e4, Q(e4) - 

Q(e2) =- , Q(e) 3e2-2e3 

Q(e3) 2e5 3e6, Q(e6) - 
2e2 ? 3e3, 

where I e2, ... , e6} is the standard basis of R6. Let Q denote the associate matrix 
of the operator Q, that is, 

el e2i, * e6] = [el, e2i * e6]Q; 

then Q is a 6 x 6 matrix given by 

Define the new vector vi= Q-u~, where Q-1 denotes the inverse matrix of Q 
and has the form 

A direct calculation gives A1Q- Q-1A1 and 

M = Q-1MQ= (M~~1 isI ' ( O O O 

Multiplying equation (2.9) by iQ-1, we obtain 

(2.12) -A1 , iM + , hQ 
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It is easy to check that the corresponding homogeneous system assumes the follow- 
ing form: 

(2.13.i) v5, V4 = V2, 

(V2~\ (V2'\ 

(2.13.ii) Ox1 

V6 V~~6 

where 

0 0 0 _ 
(2.13.iii) N 0 0 0 

-(+ 14) O O 0, 

Since det(AI - N) [A2 _ (s2 + IW12)]2, N has two eigenvalues A1 s2 ? w/F, 
A2 = - +s2+ ? wg2, and each is of multiplicity two. The square root branch is 
chosen so that it is well-defined for -w < arg z < iv and takes positive values on 
the real line. 

Let 

D= 0 A1 0 ; 

91 0 1 0 

thenl 

A A2 0 0 

0 1 A 6 

and 

D-1ND = diag{A2, A2, A1, A1}. 

Multiplying equation (2.13.ii) by D-1, we get 

(2.14) ( Wa) (12 ) ( W5) 

where 

D-1 V3 
W-5 V5 
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The solutions (WV2, w3, tW5, W6) of (2.14) can be constructed from eAlxl and eA22Xl, 

and the solution component 'Vk, for k = 2,3,5,6, corresponds to solutions of the 
Maxwell system (2.5) that are made up of modes 

(2.15) eAaxl+iW2x2+iW3x3+stt j = 1 or 2. 

By using a group velocity argument (see Higdon [8] for the details) we know that 
for j = 1 (Re A1 > 0) the mode (2.15) is associated with outgoing waves and eAlxl 

is the outgoing component of the solution, while for j = 2 (Re A2 < 0) the mode 
(2.15) is associated with incoming waves and eA2Xl is the incoming component of 
the solution. Thus, the theoretical perfectly absorbing boundary condition is given 
by 

(2.16.i) 0,2 = O on F, 

(2.16.ii) 0,3 = O on F. 

Going back to the components of ut, this means that 

(2.17.i) (w2/tt2 + ?3 3)- 1?I I 5 - -WJ =t6 )0, On F, 

(2.17.ii) (Wa2'i5 + Wa3'i6) + 1 ? wI w2 - W'f13) = 0, on F. 

Recall that i12 = E2, U3 = E3, U5 = H2, U16 = H3, and s r + if, r > 0. Since the 
above equations hold for any r1 > 0, letting r1 -* 0+ in (2.17) we get the following 
theoretical perfectly absorbing boundary condition: 

(2.18.i) (w'E2 + u4E3 -1 (WH - wf3 ) = 0, on F, 

(2.18.ii) (w22H2 ? w2H3) ? 1- (w3E2 -W2E3) = 0, on F. 

Remark 2.1. When IwI = 0, the above derivation has to be modified slightly. The 
first necessary change is that Q = I in (2.11) and (2.13.i) becomes uil 4 =40. 

The second change is that the matrices N, D and D-1 reduce to 

0 0 -s 1 0 -1 O 

0 s O 0 0 -1 0 
-s 2 ( 0 1 0 1 

1 0 0 1' 
D-=1 O 1 -1 0, 

O 1 1 O0 ~~~~~~~~~ 

and the eigenvalues of N are A1 = s and A2 =-s, and each has multiplicity two. 
Hence the two conditions in (2.16) become 

1 
w2 = 2-(u2 + u60 = O onF , 2 

1 
W3 =-(t3 - f5) =0O oniF. 

2 
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That is, 

(2.18.iii) E2(xl, 0, s) + H3(xl, 0, s) = 0, on F, 

(2.18.iv) E3(xI, 0, s) - H2(xI, 0, s) = 0, on F. 

Remark 2.2. We remark that the (2.18.iii) and (2.18.iv) onily hold when w (W1, W2) 

= 0 in the above derivation. On the other hand, a slight stretch of these conditions 
leads to the following observation. After making a trivial extension (i.e., we let the 
extended functions satisfy the same equation for all w) we get the following zeroth 
order differential equations in the time-domain: 

(2.19.i) E2 + H3 = O, on F, 

(2.19.ii) E3 - H2 = 0, on F, 

which we refer as our zeroth order absorbing boundary condition. 

2.2. Local absorbing boundary conditions. Obviously, the theoretical per- 
fectly absorbing boundary condition (2.18) is nonlocal in both space and time. 
This boundary condition is impractical from a computational point of view, since 
to advance one time level at a single point requires information from all previous 
times over the entire boundary. Hence it is necessary and useful to have local 
approximations to the perfectly absorbing boundary condition. To derive practi- 
cal absorbing boundary conditions, we will adopt the following three criteria of 
Engquist and Majda (cf. [5], [6]): 

(1) The boundary conditions substantially reduce the (unphysical) reflections from 
the artificial boundary. 

(2) The boundary conditions are local. 
(3) Each of the boundary conditions together with the interior differential equation 

defines a well-posed mixed boundary value problem. 

In the rest of this section, we only construct several local absorbing boundary 
conditions, and leave the verification of the above criteria (1) and (3) for the next 
two sections. 

Since for a real vector u?(x, t), the Fourier transform TF'(x, () with respect to t 
satisfies 

.Fu'(x, ( -Fu(x, ) E RI 

the inverse Fourier transform takes the form 

1 f0 
u(x, t) -Re j F'i(x, ()e*<tdk 

Hence, in the following we assume > 0. 
Similarly to the construction for the scalar acoustic wave equation [5], our local 

absorbing boundary conditions result from the Pade approximation of v1- 1w 2. 
Other types of approximation also could be used (see Trefethen and Halpern [21]), 
but we shall not discuss them here. 

We approximate 1_- IwI2/12 at normal incidence lwl = 0. The first approx- 
imation is /1 _- IW2/2 = 1 + O(IW12/g2). So after replacing /1 - `WI2/42 by 1 
in (2.18.i) and (2.18.ii) and applying the inverse Fourier transform to the resulting 
equations, we obtain the following first order local absorbing boundary conditions 
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for the Maxwell system (2.5) with f = 0: 

0E2 + E3 _ OH2 _ OH3 =o onf, 
0X2 OX3 OX3 aX2 

(aE2 aE3 +O H2+ aH3 orH 
aX3 aX2 a X 2 aX3 

Since the Maxwell system originally holds on the artificial boundary, we can use 
this fact to simplify the above first order absorbing boundary conditions. By the 
first and fourth equations in the Maxwell system (2.1), the above two boundary 
conditions can be simplified as follows: 

(2.20.i) ?E, +aE2 + aE3 = o, onf , 
Ot x2 OX3 

(2.20.ii) aH? +aH2 + aH3 = 
o0 onf. 

Ot X2 OX3 

Similarly, the second approximation (the first Taylor or Pade) to the square root, 
1 _11- 2 = 1 _ JW12/242 + Q(pI4/g4), leads to the following second order local 

absorbing boundary condition: 

a2 [aE2 aE3 aH2 aH3 a2 a 2 (aH2 _ aH3 
at2 [a2O3 ax x 2ax2 ax2) a3 x at aX2 aX3 aX3 aX2 2 + +X X3~ aX2 

on F, 

1 702 
+02 

(OE2 aE3 02 [(O2E2 aE3 N aH2 OH3 1 
5-X2 ? 2 2' II2 1? ?_ =0,l 2 Ox2 OX3 aX3 aX2 t aX3 aX2 aX2 aX3 

on F. 

Again, by the first and fourth equations in the Maxwell system (2.1), the above 
two boundary conditions can be simplified as follows: 

(2.21.i) a0 OF OF2 ? O3 1( 2E ( 
2 

on r 
Ot Ot ? X2 OX3 2- aX2 aX2 

(2.21.ii) a (H1 aH2 + aH3 1 (02H1 02H1 \ on F. (2.1. i) at Ot ? X2 OX3 / 2\Ox2 O9x2 

We could continue to construct higher order local absorbing boundary conditions 
for the Maxwell system, but since higher order absorbing boundary conditions are 
used less frequently due to difficulties of numerical implementation, they will not 
be given here. We conclude this section by noticing that when the electric and 
magnetic fields are divergence-free, i.e., divE = div H = 0, the above first and 
second order absorbing boundary conditions can be rewritten as 

(2.22.i) OF1 F1= 0, on r, 
Ot - Ox1 

(2.22.ii) OH- OH1 0, on F, 
O9t - Ox1 

and 

(2.23.i) =2E1 02E1 -2 (021 + 2E)= onF , 0t2 OtOx_ 1 2 +x ?02 

(2.23.ii) - HI OtOLI 
1aH 
2 2? 

HI 0, onfr. 
O2 Ox3 
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This is the same as applying the classical first and second order Engquist-Majda 
(see [5], [6]) absorbing boundary operators for the scalar acoustic wave equation to 
the normal components E1 and H1 of the electromagnetic fields on F. 

Remark 2.3. It is easy to check that if e $& 1 and [u $ 1, the boundary conditions 
(2.20) and (2.21) should be replaced by the following pair of boundary conditions: 

(2.24.i) 1 0E1 + 0E2 + 0E3 on r, 
O t x2 Ox3 

1 OH1 OH2 OH3 (2.24.ii) +t ? =0 o on F, 
c 0t x2 Ox3 

and 

~~225~' a0 (!El ? E2 153 ac( 2Ei 02E1 =, n (2.25.i) A(- t + a + a )2(021 + 2) =O, on -F, Ot kcOat Ox2 Ox3 9 2\x2? Ox3/ 

(lO H, OH2 OH3 C(O2 Hi 02H, (2.25.ii) 0 1a1+ H + aH) (2H 02 ) l o F 
Ot ~cOat ? x2 Ox3) 2O a2? 2onf 

where c = 1/ is the speed of the electromagnetic wave. 

In the next section we will show that the boundary conditions (2.20) and (2.21) 
annihilate plane waves traveling out of the domain R 3 normally to the boundary, 
but they do produce some reflections for plane waves traveling out of the domain at 
nonzero angles of incidence. To completely absorb plane waves of nonzero angle of 
incidence, we use an idea of Higdon (cf. [9], [11]) to propose the following variations 
of the boundary conditions (2.20) and (2.21): 

OEl 0152 0153 (2.26.i) (Cos'3) ?t + 0+ on F, 
Ot Ox2 Ox3 

OH1 OH2 OH3 (2.26.ii) (Cos)3) ? ? =, o on F, 
Ot Ox2 Ox3 

and 

(2.27.i) [1 + (COS,31)(COS,32)] at2 [(COS,31) + (COS,32)] + ? ) O tOx2 OtOx3/ 

(aO2El O2Ei ) , on IF 
- 2? 

+ -0,onf 
x2 3x 

a2 Hi (0a2H2_ 02H3N 
(2.27.ii) [1 + (COS,31) (COS,32)] at2 [(COS,31) + (CoS,32)] ?+ O tOx2 0t0x31 

a 02HI 02H, 
Ox2 x = ) , onF. 

We will show in the next section that the new boundary condition (2.26) annihilates 
plane waves traveling out of the domain 1R3 with angles of incidence ?i3, while the 
condition (2.27) annihilates outgoing plane waves with angles of incidence ?,31 and 
*2- 

?3. PROPERTIES OF THE LOCAL ABSORBING BOUNDARY CONDITIONS 

In this section we give two properties of the first and second order local absorbing 
boundary conditions which we developed in the last section. First, we examine the 
reflection property of each of these two local boundary conditions at F. Then, we 
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briefly indicate the invariance of these boundary conditions with respect to any 
rotation of the tangential coordinates (X2, X3). 

To analyze the reflection properties of the boundary conditions (2.20) and (2.21), 
we are interested in determining the sizes of the reflection coefficients when sinu- 
soidal plane waves of the following homogeneous Maxwell system strike the bound- 
ary F: 

(3.1.i) <t = curl H, at 
(3.1.ii) t =- curl E, 

(3.1.iii) divE = 0, divH = 0. 

It is well-known (see [14], [19]) that (3.1) admits plane wave solutions of the 
form 

(3.2) (H Eo) ei(ce-+(t) 

for any ae = (a,i, ar2, a3)t E R3 and ( E R that satisfy the dispersion relation 

(3.3) (2= la12, la =2 

Let a' = ae/(; then la'l = 1, and (3.2) becomes 

(3.4) (E E0 ei~((' X+t) 

Substituting (3.4) into (3.1.i)-(3.1.iii) we have that E? and H? must satisfy the 
following two equations (cf. [19] for a proof): 

(3.5) a&. E = O a H = 0. 

(3.6) a/ x E? =--HO o/ x Ho =E. 

From (3.5) we see that both E and H are perpendicular to the wave propagation 
vector a', so this wave is a transverse electromagnetic wave (a TEM wave). 

Let 0 denote the angle between the propagation direction &' and the positive 
xi-axis; then a' = cos 0. Since we are interested in the reflection of the above 
incident plane waves at the artificial boundary r, we only need to consider the case 

IF / 
01 < 2 a,1 = cos0 > 0. 

For a'y = (a',Ka', a')t, a' > 0, & a'l = 1, let E? = (Eo ,EOI,E?)t be a vector 
satisfying the first equation in (3.5), i.e., &' E? = 0. By the first equation in (3.6) 
we get 

(E20a3 - EOa2' 
(3.7) H? =- xE = E E?oa - E0oa') 

Eoa' - E2oa 

In order to measure the reflection produced by the local boundary conditions 
(2.20) and (2.21) when a sinusoidal plane wave strikes the boundary F, we consider 
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solutions of the interior equation (3.1) which satisfy (2.20) or (2.21) and have the 
forms: 

(3.8.i) E = El + ER, 

(3.8.ii) H = HI + HR, 

where the incident waves El, HI and the reflected waves ER, HR have the following 
forms: 

(3.9.i) EI = 0 i ~(Ce'x1+Cez2+Cez3+t) HI = (0ei(Cl xl+CeX2+C'X3+t) 

(3.9.ii) ER = R2 3E?l eiH(x1?=x2? H x3?t 2 

(3.9.iii) HR = Rc KH2) ei (x1? +2? ?x3+t) 
H3 

where Rc is the reflection coefficient to be computed. 
The objective of the present analysis is to determine the magnitude of the re- 

flection coefficient Rc when the boundary conditions defined by (2.20) or (2.21) are 
imposed. The desired boundary conditions should produi,- smaller Rc, so we want 
Rc to be as small as possible. Introducing f = a'X2 + X3 + t and substituting 
(3.8) (with (3.9)) into (2.20), we obtain 

(3.10) if [(E? + E?oa' + EOaC) + Rc(-E? + Eoa' + E3oaX)] e2(e = 0, on r. 
(3.11) if [(Ho + H2a ? H?C) ? R(-Hr + Hoa + H3?CX3)] e'(t = 0, on r. 

Noticing that E? c a = E33= + Eoa0 + EoaX = 0 and H? satisfies (3.7), which 
implies that Ho c>' = 0, we obtain from (3.10) and (3.11) that 

(3.12) Rf() 1-c4 = 1-cosO 

where the superscript (1) indicates that Rfl) is the reflection coefficient correspond- 
ing to the first order absorbing boundary condition (2.20). 

To determine RC2), we substitute (3.8) (with (3.9)) into (2.21) and get 

(i()2 { [(E? + E?oa + EOaC) + Rc(-E? + E?oa + E3?CX)]. 

(3.13) --(1- ?c eEe 0 O, on F. 

2 RCE [(/2 3~) 

(i() 2 {[(Ho? + H2?oa' + H3?a') + Rc(-H1? + H?oa / + H3?a') 

(3.14) -(1- Rc)H eie , on F. 

2 
RCH [(/2 (3) Recalling that 

&' 
E? = 

&' 
Ho = 0 and (a/ )2 = 1 - (a/)2- (a')2, we get from 

(2.13) and (2.14) that 

(3.15) R(2) = (1/) = (1 cosO) 
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Summarizing the above derivation, we have the first main theorem of this paper. 

Theorem 3.1. Any electromagnetic plane wave of the form (3.4) which travels out 
of the domain R' at the angle of incidence 0, 101 < , is refected at r by the 
boundary conditions (2.20) and (2.21) respectively into another plane wave which 
has the same polarization as the "outgoing wave" does and whose amplitude equals 
the amplitude of the "outgoing wave" times the reflection coefficient 

R(l)(0) l cosO or R (2) ( l(cosO}) 
2 

1? +Cos0o I + ~1cosO) 

respectively. 

Remark 3.1. Following the same derivation one can show that the reflection coeffi- 
cients of the boundary conditions (2.26) and (2.27) are given by 

~(-) (0) = cos 3-cos 0 and _(2) (0) cos 1 -cos 0 cos/32 -COS 0 
cos3 + Cos 0 C cos 1 + cos 0 cos 32 + cos 0' 

respectively. So the boundary condition (2.26) annihilates plane waves traveling 
out of the domain R' with angles of incidence ?/3, while the condition (2.27) 
annihilates outgoing plane waves with angles of incidence +131 and +/32. 

Remark 3.2. In [12], Joly and Mercier showed that their second order absorbing 
boundary condition for the Maxwell system is invariant with respect to any rotation 
about the normal axis. This is another very important property for an absorbing 
boundary condition to have, since the same property is already possessed by the 
Maxwell system in the interior domain. Here we remark that our local absorbing 
boundary conditions (2.20), (2.21), (2.26) and (2.27) also possess this invariance 
property. 

To see this, we notice that the only places the tangential coordinates x2 and X3 
appear in the boundary conditions (2.20), (2.21), (2.26) and (2.27) are either in the 

0E2 0E3 OH2 OH3 O2E1 O2E1 
divergences + and + , or in the Laplacians 2 + and 

aX2 aX3 aX2 aX3 ax2 ax2 

Ox + 02 Hence, any rotation about the normal axis, which is a rotation in the 

(X2, x3) plane, will not change the boundary conditions (2.20), (2.21), (2.26) and 
(2.27), since both the divergence operator and the Laplace operator are invariant 
under rotations (cf. [14]). 

?4. ANALYSIS OF STABILITY OF LOCAL ABSORBING BOUNDARY CONDITIONS 

In this section, we will show that the boundary conditions introduced in the 
previous section satisfy a stability condition originally developed by Kreiss and 
Majda-Osher for determining well-posedness of initial-boundary value problems 
for first order linear noncharacteristic strictly hyperbolic systems (cf. [13]) and 
uniformly characteristic hyperbolic systems (cf. [15]). This condition is often called 
the Kreiss criterion or Kreiss condition, and when it is satisfied we say that the 
initial-boundary value problem is well-posed in the sense of Kreiss. Recall that 
the Maxwell system is not strictly hyperbolic and the flat boundary F = {x = 
(XI, X2, X3); xi = 0} of the half-space R 3 {X = (X1,X2,X3);Xl > 0} domain is a 
uniform characteristic of the system in the sense of [15]. 
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4.1. Verification of the Kreiss condition. We recall the following: 
Kreiss condition. For an initial-boundary value problem defined on the half 

space domain 1R', a boundary condition on F is said to fulfill the Kreiss condition 
if and only if the boundary condition is not satisfied by any nonzero solution of the 
interior equation belonging to either of the following categories: 

(i) Solutions of the form 

(4.1) '(x1)eiW2X2+iW3X3+St 

for which Res > 0 and '(Xi) -* 0 as x1 +-* oo. 
(ii) Solutions that are limits of solutions in (i) as Res 0-* +. 

Remark 4.1. The Kreiss condition in the above form is due to Higdon for the non- 
characteristic case (page 851 of [11]), and the same description was given by Majda 
and Osher for the uniformly characteristic case (page 614 of [15]). This is an equiv- 
alent formulation of the original Kreiss condition; we refer to [8], [11] for a discussion 
on this and also for a physical interpretation of above the Kreiss condition. For the 
original algebraic description of the Kreiss condition, we refer to Kreiss [13] and to 
Majda and Osher [15]. 

The objective of this subsection is to verify that the local absorbing boundary 
conditions introduced in the last section satisfy the Kreiss condition. Before we 
do this, we first need to prove the following characterization theorem for decaying 
solutions of the form (4.1) of the homogeneous Maxwell system. 

Theorem 4.1. If Re s > 0, then a nonzero solution ui of the homogeneous Maxwell 
system 

(4.2) a= Ajt 

u 
u =(H ' 

of the form (4.1) tends to zero as xi -1 +oo if and only if u7 assumes the following 
form: 

(4.3) u = W(xl)eiw2x2?iw33?st 

where 

9(Xl) = (C3d2 ? c4b2)eA2xl, A2 = - , 

IL12 = L,2 +2 = ( W2 ?L LO3 = (.4 W2,3, LI3.) 

_2 f | '<A2, w, 0, ? WA22)t if 2 2 0, 

a (O,i,O,O,o,l)t, if 1w1 = 0,s 0, 

- (0, A2' A2' A' -w2 2 2 3 if |wI1 7& 
0, 

1(0o,o,1,o,-1,o)t, if w1 =O,s 0, 
where C3 and C4 are two arbitrary complex constants such that |C31 + |C41 0 . 

Proof. Let u7 = ,5(xl)eiw2x2?iw3x3?st be a solution of (4.2). Substituting u7 into 
(4.2), we get 

(4.4) iA1 Oi?(xI) = M(w, s)-(xi), ax1 
where M(w, s) is defined by (2.10). 
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First, we consider the case lwl = 0. Notice that M(0, s) = isI, so the ordinary 
differential system (4.4) reduces to the following three decoupled 2 x 2 systems: 

{ 0 = SI(xi), fP2(X2 ) = -S6(xi), f(3(X3 
) = 

-S5(X5), 

0o = S(4()), = -s(2(xi), (xi) = -s3(x1). 

Clearly, when s = 0 (4.4) only has constant (in x1) solutions. Consequently, 
(4.2) has no decaying solutions of the form (4.1) in this case. On the other hand, 
when s 7& 0, the general solution of (4.4) has the form 

(4.5.i) '(xl) = (clal + c2bi)eAlxl ? (c3a2 ? c4b2)eA2xl, 

where 

(4.5.ii) al = (0, 1, 0, 0, 0, -l)t, bi = (0, 01, 01,0 )t, 

(4.5.iii) a2 = (0, 1 0, 00)t, b2 = (Oi,O0 1i O0 -1, O)t) 

and c1, , c4 are arbitrary complex constants. The general solution of the form 
(4.1) of the equation (4.2), therefore, is 

(4.6) u = [(cldi + c2bi)eAlxl + (C3d2 + C4b2)eA2xl]e2w2+2w3x3?st 

Since ReAl > 0 and ReA2 < 0, eAlxi -* +oo and eA2X1 -* 0 as x + oo. 

Noticing that a' and b1 are linearly independent, we conclude that (nonzero) u7 -* 0 
as xi -* +oo if and only if c = c2 = 0 and Ic31 + IC41 7& 0, i.e., if and only if u has 
the form (4.3). Hence the theorem is proved in the case lwl = 0. 

Next, suppose Iwi 7& 0. Since M(w, s) in (4.4) is no longer a diagonal matrix, the 
ordinary differential system (4.4) is not a decoupled system as in the case lwl = 0. 
However, following the derivation of the perfectly absorbing boundary conditions 
given in ?2.1 (cf. (2.10)-(2.14)), we can show that the general solution of (4.4) is 
given by 

(4.7.i) '(xI) = (cll + c2bi)eAlxl + (c3a2 ? c4b2)eA2xl, 

for all Re s > 0. Here 

(4.7.ii) 
-iIwI ~~/ s / s / /s 1.I 

=al _ / (3 , 2 )t, bi = ( __ 
2 

&Iflt 
A1 ,w2 ,02 A1 A1 (0L1J32 A1 A1 

3 

(4.7.iii) 
a2 WI W&)2v&)3, /3 , _ 2 )_ / t 

A2 A2 A2 A2 A2 A2 

and cl,... , C4 are arbitrary complex constants. Hence the general solution of the 
form (4.1) of the equation (4.2) is again given by (4.6) with the above aj and bj. 

Using the same argument as in the case lwl = 0, we conclude that (nonzero) 
u -* 0 as xi - +oo if and only if ci = c2 = 0 and Ic31 + 7C41 =A 0, i.e., if and only if 
u has the form (4.3). So the theorem holds in the case lwl =A 0. The proof now is 
completed. D 

Remark 4.2. As a direct byproduct of the above proof, we have shown that the gen- 
eral solution of the associated homogeneous equation of the transformed Maxwell 
system (2.9) is given by 

L(xl) = (cl d + c2bi)eAlxl ? (c3A2 + c4b2)eA2xl, 
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for arbitrary complex constants c1, , C4, and the vectors aj and bj are defined by 
(4.5) when I w = 0 and by (4.7) when Iw1 7 0. 

Another byproduct of the proof of Theorem 4.1, this one indirect, is that every 
L2([0, +oo))-integrable (in xi) solution of the corresponding homogeneous equation 
of (2.9) must have the following form: 

72(xI) = (C3d2 + c4b2)eA2xl. 

We now are ready to state our third main theorem of this paper. 

Theorem 4.2. The boundary condition defined by (2.19) satisfies the Kreiss con- 
dition. Each of the boundary conditions defined by (2.20), (2.21), (2.26) and (2.27) 
satisfies the Kreiss condition, except for the case lwl = 0. 

Proof. We only give the proof for boundary conditions (2.19), (2.20) and (2.21), 
since the proofs for boundary conditions (2.26) and (2.27) are same as those for 
(2.20) and (2.21). 

First, we consider the case lwl 7& 0. FRom the Kreiss condition and Theorem 4.1 
we know that it suffices to show that any solution of (4.2) of the form (4.3) does 
not satisfy the boundary conditions for Res > 0. Notice that E1 = u1, E2 = U2) 

E3 = U3; HI = u4, H2 = u5, and H3 = u6, where uj is the jth component of the 
vector function u' in (4.3). Let (x) = iw2X2 + iw3x3; from (4.3) we know that when 

lw 7& 0 the decaying solutions of (4.2) of the form (4.3) are given by 

El = C3 1li el A22xl +(x)+st 

= e 
( / ___________ E2 = (C3W21 3o eA2Xl +i(X)+ St 

IW 2 ? s 2 

Hl= c33 e >X+()s 

( / ~~C4W /S 
H2 = ( C3 S _ C2 eA2Xl2+(X)+St 

- = -C4 (.4) j A2Xie(X) +St 

(4 9) (aat1+ aaH22 +C3W3 = (0-1 i(C4) St 

H w1I ?W +s~2 C4 2 

23 /s 

? a dE1 + dE2 + ( E8 _ A {(X) St 

?13 10 at Vt 2 C 4 W 3 
- 

By direct computations we get that for any x E IF 

(E2??H3 kIW -W3 iC3~ 
(4.8) = ko 2I 

kE3 -H2J / 
w4 /\C4/ 

'+E1 + ?E2 + aE31 0 - 4 
(4.9) V li ? ? __ J 2 (+ ) ( ) 

Qa El?0 E2?0 E3 -ia (OEl+ aE1 \ 
aO~ t 0X2 OX3] 2 ax2 Ox2) (4.10) ITOl? H?&3\ i(2H? 3 - k2 ( 20 (C3) 

Ot 0a- X2 aX3} 2 ax X '2 jX 
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where 

(4. 11. i) ko= (I + /s) ee(x)+st kii(1? I+) ee(x)+st 

lw(2s2 ? Iw12)~ e(x)?st. (4.11.ii) k2 =i (S + + 2? s2 } 

Since I w 1 0, clearly, kj + 0, j = 0, 1, 2, for Re s > 0. Hence each right hand 
side of (4.8)-(4.10) is a zero vector if and only if c3 = C4= 0. That is, there is no 
nonzero solution of (4.2) of the form (4.3) which satisfies the boundary conditions 
(2.19), (2.20) and (2.21) in the case wl 74 0. 

Next, we consider the case lwl = 0. From (4.3) we know that when lwl = 0 the 
decaying solutions of (4.2) of the form (4.3) are given by 

El 0, H, _ O 

E2= C3e-s(Xi-t) H2 =-C4e-5(Xl-t) 

E3= C4es(x t), H3 = C3es(x-t) 

Recall that s must be nonzero, as otherwise there is no decaying solution of (4.2) 
of the form (4.3) when Iw I = 0. 

Since E1 _ H, _ 0 and E2, E3,H2,H3 all are independent of x2 and x3, it is 
easy to check that the above solutions do not satisfy the boundary condition (2.19) 
unless c3 = C4= 0. However, they do satisfy the boundary conditions (2.20) and 
(2.21) for any complex constants c3 and C4. The proof is now completed. D 

4.2. Remarks on the case w(I = 0. In the previous subsection we found that 
for the first order and second order boundary conditions (2.20), (2.21), (2.26) and 
(2.27) there is a breakdown in the Kreiss condition when lwl = 0. It is known that 
breakdowns in the Kreiss condition also occur for absorbing boundary conditions 
for acoustic and elastic waves, but only in the case of zero frequency and zero wave 
numbers (cf. [9], [11] and references therein); that is, it happens when s = 1lw = 0. 
So the situation for the electromagnetic wave equations with the proposed absorbing 
boundary conditions is a bit different from those for acoustic and elastic waves. 

The purpose of this subsection is to briefly point out three cures for the stability 
breakdown seen in the previous subsection for electromagnetic waves at angle of 
incidence zero. For the sake of definiteness and simplicity, we only use the boundary 
condition (2.20) as an example to explain the ideas, which can be applied easily to 
the boundary conditions (2.21), (2.26) and (2.27). 

The first cure is a well-known one (cf. [9], [11]): to remove the instability by 
removing the incompatibility between the initial data and the boundary condition. 
This can be achieved by doing a suitable initialization of the boundary condition. 
For more discussion in this direction, we refer to [10]. 

To introduce the second cure for the instability, we recall that to derive (2.20) 
we first approximate V1- lwF2/2 by 1 in (2.18), to get 

(4.12.i) (22E2 + w3E3) - (3H2 - w2H3) = 0, on F, 
(4.12.ii) (22H2 + w3H3) + (3E2 - w2E3) = 0, on F, 
and then apply the inverse Fourier transform. However, since the inverse Fourier 
transform is uniquely determined up to an additive null function (zero function 
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class in L2), more precisely, let x' (x1, x2), from (4.12) we should get 

(4.13.i) 0152 0153 _ (OH2 OH3) - m(x',t), on F, 
OX X3 Ox3 0X2 

0152 _ 013 N H2 OH3 
(4.13.ii) (+2 ? ? + =n(x',t) on F, 

(4.13.ii) ~ ax3 0X2 / X2 Ox3 
for some m(x', t) and n(x', t) such that 

(4.13.iii) JI m(x', t)I2dxldt = 0, In(x', t)I2dx'dt= 0. 

Therefore, (2.20) becomes 

(4.14.i) ?El + ?E2 + 3 = m(x', t), on , 
Ot X2 Ox3 

(4.14.ii) OH1 OH2 +H3 =n(x', t), on . 
Ot ?X ?OX3 

It is not hard to check that if one of m(x', t) and n(x', t) is not identically equal 
to zero, say, m(x', t) = 0.1 for X2 = x3 = 0 and m(x, t) = 0 otherwise, then the 
boundary condition (4.14) satisfies the Kreiss condition. It is interesting to note 
that if one chooses m(x', t) _ e1 and n(x', t) 6E2, this cure is similar to the one 
proposed by Higdon in [9] and [11] for the acoustic and elastic wave equations. Since 
this stabilization approach will cause some additional reflections, the constants E1 
and 62 must be chosen with care. For more discussion in this direction, we refer to 

[9] and [11]. 
The last cure for the instability is a variant of the previous one. Since the Fourier 

transform is defined uniquely up to an additive null function, we can divide both 
sides of (4.12.i) and (4.12.ii) by W2 to get 

(4.15.i) E2 + H3-3(H2-E3) = 0, on F, 

(4.15.ii) H2 - E3 + ? H3) = 0, on F. 

Applying the inverse Fourier transform, we obtain 

(4.16.i) E2+H3 j(32 E2)dx' = m(x', t), on F, 

(4.16.ii) H2 - E3 + J( + ) dx = n(x', t), on F. 

where m(x', t) and n(x', t) are two null functions in L2. One can show that 
the boundary condition (4.16) satisfies the Kreiss condition for any null functions 
m(x', t) and n(x', t). On the other hand, since (4.16) involves integrations in x2, it 
is a "weakly" global boundary condition. 

?5. NUMERICAL EXPERIMENTS 

In this section we present some numerical experiments to show the effectiveness 
of the absorbing boundary conditions developed in this paper. For simplicity all 
computations are done in two space dimensions. 

To get the two space dimensional Maxwell system, one assumes that all the field 
and source quantities are independent of one spatial variable, say X3. Then it is 
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easy to check that the Maxwell system (2.1) with zero source is reduced to the 
following two decoupled systems of three equations: 

(5.1.i) AEt 1OH3 
At - Ox2 

(5.1.ii) dE2 _ 1H3 
at 6 Ox, 

(5. 1. iii) 
aH3 I 

(aE - __ 

at OX 2 Ox, 
and 

(5.2.i) aH1 _ 1 OE3 
At ,u Ox2 

(5.2.ii) aH2 1 0E3 
At 

- OxI 
(5.2.iii) 0 =3 = 1 OH2 OH1 

The solutions of systems (5.1) and (5.2) are often referred as Transverse Electric 
(TE) waves and Transverse Magnetic (TM) waves, respectively, in the literature. 
In this section numerical tests are done only for TE waves, but all results are also 
valid for TM waves because of the symmetry in E and H of the absorbing boundary 
conditions. 

The finite difference method is used to discretize both the interior equations (5.1) 
and the boundary conditions (2.20) and (2.21). Specifically, Yee's second order 
leapfrog finite difference scheme is adopted to discretize the interior equations (cf. 
[22], also see [18]), and Mur's idea is used to discretize the boundary conditions 
(2.20) and (2.21) so that the truncation errors on the boundary have the same 
order as Yee's method (cf. [16], [18]). 

All computations described here are done on square grids, that is, h = Ax, = 

Ax2, and the size of h is chosen according to the size of the frequency of the 
test problem so that there are about 15 grid points per wave length. Since Yee's 
scheme is an explicit scheme, the time step At must be chosen to satisfy the CFL 
(Courant-hiedrichs-Levy) condition for the stability. It is well known that the 
CFL condition in two space dimensions for Yee's scheme is given by (cf. [22]) 

(5.3) cAt < 2 c /I 

where c is the speed of the electromagnetic wave. In this section our test problem 
is formulated in terms of nondimensional variables for which c = 1. 

The sizes of the reflections are measured using discrete L2 and L? norms of 
the error functions over the computational domain. The error functions are the 
differences between the free space (numerical) true solutions, which are known in 
all tests, and the computed solutions with the absorbing boundary conditions. 

Test problem. We consider the Maxwell system (5.1) on the square domain Q = 

[0,1]2, which has sinusoidal solutions of the form 

(5.4.i) E1 = a, sin(wt + alxl + ae2x2), 

(5.4.ii) E2 = a2sin(wt + alxl + ae2x2), 

(5.4.iii) H3 = a3 sin(wt + alxl + ae2X2), 
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where 

(5.4.iv) alw = a3c02, a2W =-a3c1, a3W = alC2- a2c1. 

It is easy to check that (5.4.iv) implies the dispersion relation 

(5 5) ,L,2 = aU2 + a 2 2 2 

Note that we have assumed that e = ,u = 1. Since the absorbing boundary condi- 
tions of this paper are developed for the half-space domain, in the tests described 
below we only consider the case that one edge Fi = {(0, x2); 0 < x2 < 1} of Q is the 
artificial boundary, and the true values of the exact solution are used as boundary 
conditions on the other parts of the boundary. 

Below, we present the computational results of two tests for the example dis- 
cussed above (after 30 time steps). In the first test we choose the frequency w = 15 
and h = 1/40, while in the second test we have w = 30 and h = 1/80. But in both 
tests we take a3 = 2.5 and A\t = h/5. Tables 1 and 3 contain the results obtained 
by using the first order absorbing boundary condition (2.20), and Tables 2 and 4 
contain the results obtained by using the second order absorbing boundary condi- 
tion (2.21). The graphs of the computed E1 field and its reflection caused by the 
absorbing boundary conditions (2.20) and (2.21) when w = 15, 0 = 14.8? are shown 
in Figures of Test 1; the graphs of the computed H3 field and its reflection when 
w = 30, 0 = 29.9? are given in Figures of Test 2. As expected, the second order 
boundary condition (2.21) performs much better than the first order boundary con- 
dition (2.20) does. One reason for that, which can be seen from the computation 
results, is that the reflection produced by using (2.20) propagates back into the 
computational domain at a faster rate than the reflection produced using (2.21). 
After 30 time iterations, the former propagates about 5 grids into the computa- 
tional domain, while the later moves about 3 grids into the computational domain. 
Finally, it is also worth mentioning that the computation results indicate that the 
reflections using two boundary conditions are independent of the frequency. 

TABLE 1. The relative reflections produced by (2.20) with w = 15 

angle |0 = 2.1? 0 = 14.80 ] 0 = 29.9? ] 0 36.90 
reflection L2 LO? {L2 jL?? ]L2 IL? JL2 IL 

E1 0.608 2.319 0.925 3.933 2.589 10.965 3.731 15.576 

E2 0.413 1.467 0.884 2.767 2.821 9.227 4.469 15.222 

H3 0.380 1.154 0.804 2.482 2.245 7.620 3.189 11.308 

TABLE 2. The relative reflections produced by (2.21) with w = 15 

angle 0 = 2.1? 0 = 14.80 0 = 29.90 0 = 36.90 

reflection (%) JL2 J L?? jL2[ LO L2 ILO ]L2I LO 

E1 0.048 0.965 0.080 0.479 0.130 0.727 0.117 0.664 

E2 0.261 1.016 0.224 1.038 0.305 1.539 0.312 1.692 

H3 0.223 0.851 0.182 0.857 0.219 1.121 0.205 1.165 
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TABLE 3. The relative reflections produced by (2.20) with w = 30 

| angle | 0 = 21? La = 14.8? 0 = 29.90 0 = 36.90 
reflection (') L 2 L?? T L2 I L?? T L2 | L? T L2 ILOO 

El 0.356 2.307 0.684 3.950 1.911 10.980 2.722 15.653 

E2 0.328 1.457 0.622 2.766 2.018 9.219 3.163 15.220 
H3 0.317 1.353 0.562 2.483 1.587 7.167 2.243 9.869 

TABLE 4. The relative reflections produced by (2.21) with w = 30 

angle j 0 = 2.1? 0 = 14.8? [ 0 = 29.90 j 0- 36.90 
reflection (%) jL2 ]L? JL2 ILO [L2 tL? jL2 1L? 

El 0.040 0.961 0.061 0.479 0.094 0.729 1.108 0.818 

E2 0.186 1.012 0.152 1.037 0.221 1.538 0.252 1.711 

H3 0.152 0.848 0.122 j0.858 0.159 1.121 0.164 1.124 
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